Classical Method of Time Series Analysis
The classical method of time series is done by decomposing… Read More »Classical Method of Time Series Analysis
The classical method of time series is done by decomposing… Read More »Classical Method of Time Series Analysis
Introduction Most of you have heard about the term Time… Read More »Time Series Analysis
Poisson Distribution outputs the probability of a sequence of events happening in a fixed time interval.
In a Uniform Distribution Probability Density Function (PDF) is same for all the possible X values. Sometimes this is called a Rectangular Distribution. There are two (2) parameters in this distribution, a minimum (A) and a maximum (B)
Normal Distribution is the most important probability distribution in Probability and Statistics. A normal probability distribution is a bell shaped curve. Many numerical populations have distributions that can be fit very closely by an appropriate normal curve.
Earlier we used Probability Mass Function to describe how the total probability of 1 is distributed among the possible values of the Discrete Random Variable X.
Estimation of model parameters is an essential part in regression analysis. We do that by using the Ordinary Least Squares method
A Random Variable is any rule that maps (links) a number with each outcome in sample space S. Mathematically, random variable is a function with Sample Space as the domain. It’s range is the set of Real Numbers.
In the Negative Binomial Distribution, we are interested in the number of Failures in n number of trials. This is why the prefix “Negative” is there. When we are interested only in finding number of trials that is required for a single success, we called it a Geometric Distribution.